Introducing Monads

Lecture 3,
Designing and Using
Combinators
John Hughes

Common “"Look and Feel”

We have already seen that do and return can be
used with many different DSELSs:

* Parsers, Wash/CGI
°J1O, ST s

These are all examples of monads.

A monad is something that supports do and
return!

The do Syntactic Sugar

The do syntax is just sugar for using an
overloaded operator:

e TS
{do(}f-ﬂ) e[>;= (\x->do%)

\
Sequencing. “bind
Common in DSLs. | ”~

Example

/

~

do s <- readFile f

-

writeFile g s

return s
J

—

readFile f >>= \s->

~

iteFile gs >>=\ -

return s

/

What are the Types?

A monad is always associated with a
parameterised type, e.g. 10 or ST s, the type of

actions.
Call it m. I

readFile f >>= \s->
iteFile gs >>=\ -
return s

return::a->ma

/

What is the type of >>=?

What are the Types?

A monad is always associated with a
parameterised type, e.g. 10 or ST s, the type of

actions.
Call it m. I

readFile f >>= \s->
iteFile gs >>=\ -
return s

return::a->ma

/

What is the type of >>=?

(>>=):ma->..->..

First arg is an action

What are the Types?

A monad is always associated with a
parameterised type, e.g. 10 or ST s, the type of

actions.
Call it m. ~

readFile f >>=\s->
iteFile gs >>= _-:>
return s

return::a->ma

/

What is the type of >>=?

(>>=)::ma->(a->..)->

Sebond arg receives result of fi‘rst

What are the Types?

A monad is always associated with a
parameterised type, e.g. 10 or ST s, the type of

actions.
Call it m. I

readFile f >>=\s->
iteFile gs >>=\ ->
return s

return::a->ma

/

What is the type of >>=?

(>>=)::ma->(a->mb)
>

Second arg returns an action

What are the Types?

A monad is always associated with a
parameterised type, e.g. 10 or ST s, the type of

actions.
Call it m. I

readFile f >>=\s->
iteFile gs >>=\ ->
return s

return::a->ma

/

What is the type of >>=?

(>>=)::ma->(a->m
->mb esult is an action retur%

result of second arg.

The Monad Class

Monad operations are overloaded (hence can be
used with many libraries).

~
class Monad m where

return::a->ma
(>>=)::ma->(a->mb)->mb

%
@tance MOI@ il@onad (ST a

The Monad Class

Monad operations are overloaded (hence can be
used with many libraries).

~
class Monad m where

return::a->ma
(>>=)::ma->(a->mb)->mb

/
in%nce Mona@.. i@Monad CGB

Why Use Monads?

Why Use Monads?

*A shared interface to many libraries

*allows a common “look and feel” --
familiarity!

liftM :: Monad m => (a->b) -> m a -> m b>tanda
sequence :: Monad m => [m a] -> m [a] r,d
do syntactic sugar! y k}ggg

*functionality the DSEL implementor need not
implement

e and which 1icer<c aAalreadv know how to 11ce

Why Use Monads?

*A shared interface to many libraries

*A design guideline: no need to spend
intellectual effort on the design of sequencing
operations.

Why Use Monads?

*A shared interface to many libraries

*A design guideline: no need to spend
intellectual effort on the design of sequencing
operations.

*A systematic implementation: saves intellectual
effort, encourages code reuse.

Systematic Monad
Implementation

*Start with an underlying monad (e.g. IO, ST)

*Add features (e.g. state, exceptions,
concurrency) one by one.

Systematic Monad
Implementation

*Start with an underlying monad (e.g. IO, ST)

*Add features (e.g. state, exceptions,

concurrency) one by one.
his can be
automated!

2\ NS

The Identity Monad

The "vanilla” monad, supporting no special
features.

réwtype Ida=1d % An abstract

pe: represente
instance Monad Id where | by ana, buta
return x = Id x different type.
KId x>>=f=1fx Y,

Note (in passing) that >>=is lazy -- it doesn’t
need its first argument unless f does.

Monadic “sequencing” doesn’t imply
sequencing in time...

Adding Features: Monad
Transformers

A monad transformer transtorms an existing
monad (without a particular feature) into a new
monad which has it.

A parameterised monad -- represent by a

paramg{ass (Monad m, Monad (t m)) =>

MonadTransformer t m where

e y

~

What should the method(s) be?

Adding Features: Monad
Transformers

A monad transformer transtorms an existing
monad (without a particular feature) into a new
monad which has it.

A parameterised monad -- represent by a

paramg{ass (Monad m, Monad (t m)) =>

MonadTransformer t m where

\llft::ma->tma y

~

Anvthina we can do in the old monad. we can also

Example: Adding State

Consider adding a state feature: actions may
depend on, and change, a state.

class Monad m => StateMonad s m | m -> s where
pdate :: (s->s)->ms

tick :: StateMonad Intege}m
Iv‘ve‘EdState = update id ; => m Integer

iteState s = update (\ ->$)ck = do n <-readState
writeState (n+1)

return n J

The State Monad

How can we add a state to actions?

Let actions take the state as an argument, and
deliver a new state as a result.

lEewtype State s m a = State (s->m (S,ag)
NN

arameterised on bot
the state and the
underlying monad.

The State Monad

lEewtype State s m a = State (s->m (S,ag)

The monad operations just pass the state along.

instﬁlce Monad m => Monad (State s m) v\vhere
return x = State $ \s -> return (s,x)
State f >>= h = State $ \s ->
do (s’,a) <-fs

let Stateg=h a

9S8 /

The State Monad is a

StateMonad

lEewtype State s m a = State (s->m (S,ag)

Of course, we can implement update:

ins‘énce Monad m => StateMonad s (State

here
update f = State $ \s ->
lets’ =fsin
return (s’,s’)

S m)

%

State is a Monad
Transformer

lEewtype State s m a = State (s->m (S,ag)

Can we "lift” actions in the underlying monad?

Yes -- they don’t change the state!

insémce MonadTransformer (State s) m wﬁere
ift a = State $ \s ->
do x <- a
return (s,x)

/

Last Step: Run Functions

We must be able to observe the result of an action
-- otherwise the action is useless!

(The only exception is the IO monad, which is
observable at the top level).

We define a run function for every monad (c.f.
mnSmM

"\ Main> runld $ runState 0 $
runld (Id a) = s
sequence
runState s (State f) =
let (s',a) = £ s in [tick, tick, tick]
) 10,1,2]

Main>

Summary: How to Add a
Feature

*Define a class representing the feature to be
added (StateMonad).

*Define a type parameterised on an underlying
monad to represent actions supporting the
feature (State).

*Define sequencing of actions (instance Monad).

*Define how it supports the feature (instance
StateMonad).

*Define how to lift underlying actions (instance
MonadTransformer).

e NNafFnrna hatwrar ¥ Ahcarya Fha aci1ily AF a1 At AN

Another Example: Failure

Add a possibility for actions to fail, and to handle
failure.

7

class Monad m => FailureMonad m where
failure :: m a
handle:: ma->ma->ma

-

Applications in search and backtracking
programs.

Example:

Eiiyide Xy = if y==0 then return (x/y) else

Actions with Failure

Allow actions to deliver a special result, meaning
I failed”.

nev{wpe Failure m a = Failure (m (Mayb% a))
™S

_—

data Maybe a = Just a
| Nothing

N~ -

Sequencing Failure

Sequencing must check if the first action failed,
and if so abort the second.

in/stance Monad m => Monad (Failure m) \
where
return x = Failure (return (Just x))
Failure m >>= h = Failure $
doa<-m
case a of
Nothing -> return Nothing

\ Just x -> let Failure m’ = hx in }n/

Supporting Failure

iys(tance Monad m => FailureMonad m wﬂe
failure = Failure $ return Nothing

Failure m handle Failure h = Failure $
do x <-m
case x of
Nothing -> h

\\ Just a -> return (Just a) /

Lifting Actions to Failure

Lifting an action just makes it succeed (return
Just something).

\
astance Monad m =>

MonadTransformer Failure m where
lift m = Failure $ do x <-m
return (Just x

N

.

Observing Result of a
Failure

runFailure :: Failure ma->m a
runFailure (Failure m) =
do Justa <-m
return a

What happens if the result is Nothing? Should
runFailure handle this?

NO! Handle failures in the monad!

Mair{> runld $ runFailure $ return 2 handle reij.!rn 3
2

Observing Result of a
Failure

runFailure :: Failure ma->m a
runFailure (Failure m) =
do Justa <-m
return a

What happens if the result is Nothing? Should
runFailure handle this?

NO! Handle failures in the monad!

N
MaiE> runld $ runFailure $ failure handle return 3
3

/

Combining Features

Suppose we want to add State and Failure to a

monad

enéronple ::

(StateMonad Integ

FailureMonad m)
=> m Integer

example = do tick

failure
"handle

\ do tick

em,

/

We can build a
suitable monad in
two ways:

* Failure (State
Integer m)

Need new instances:

 FailureMonad (State s n
* StateMonad (Failure m)|s

\

1)

/

Sample Runs

example :: }
(StateMonad Integer m,

FailureMonad m)
=> m Integer

example = do tick

failure
"handle

\ do tick /

Main> runld $ runState O $ runFailure $ example
1

Main> runld $ runFailure $ runState 0 $ example
0

Sample Runs

example :: }
(StateMonad Integer m,

FailureMonad m)
=> m Integer

example = do tick

failure
‘handle® Failure (State Integer 1(1)

\ do tick

Main> runld $ runState O $ runFailure $ example
1

Main> runld $ runFailure $ runState 0 $ example

0 St{ate Integerm:[d)

What are the types?

£ ays y1e1
e Failure (State sm) a 0s -> m (s, final sta

No state oﬂ
* State s (Failure m) a Os -> m (May% failure

Fal@:/ate Integer idj

Main> runld $ runState O $ runFailure $ example
1

Main> runld $ runFailure $ runState 0 $ example

0 St{ate Integerm:[d)

Why the Different
Behaviour?

Compare the instances of handle :

istance FailureMonad m => FailureMonad (State s m) whe
ratelm handle State m' = State $ \s ->

s handle m's
%e state in handlep-

instance Monad m => FailureMonad (Failure m) where

Failure m handle Failure m' = .
Failure (do x <-m M is a state monaﬂ
case x of '
Nothing -> mJASo state changes|

_ Just a -> return (Just a)) j

Example: Parsing

* A parser can fail -- we handle failure by trying
an alternative.

* A parser consumes input -- has a state, the input
to parse.

‘t@ﬁé Parser m tok a = State [tok] (Failure}?'ﬂ) a

/

We get for free:
ype synony.
Enot abstrac * return X -- accept no tokens &

succeed
* do syntax -- for sequencing

e failiire —the failina narcer

Parsing a Token

saIzéy p = do s<-readState \

case s of
[] -> failure
x:Xs -> if p x then do writeState
return x
else failure

litéQl tok = satisfy (==tok) /

XS

Completing the Library

/p|||q=p‘hand1e‘q N
many p = some p ||| return []
some p = liftM2 (:) p (many p)

runParser p input =
_ runFailure $ runState input$p /

This completes the basic parsing library we saw
in the previous lecture.

Summary

* Monads provide sequencing, and offer a
general and uniform interface to many different
DSELs.

* Monad transformers provide a systematic way
to design and implement monads.

* Together with generic monadic code, they
provide a lot of functionality “for free” to the
DSEL implementor.

