
  

Introducing Monads

Lecture 3,
Designing and Using 

Combinators
John Hughes



  

Common ”Look and Feel”

We have already seen that do and return can be 
used with many different DSELs:

•Parsers, Wash/CGI

•IO, ST s

These are all examples of monads.

A monad is something that supports do and 
return!



  

The do Syntactic Sugar

The do syntax is just sugar for using an 
overloaded operator:

do  x <- e
      c e >>= (\x -> do c)

do e e

Sequencing.
Common in DSLs.

”bind
”



  

Example

do s <- readFile f
     writeFile g s
     return s

readFile f >>= \s->
writeFile g s >>= \_->
return s



  

What are the Types?

A monad is always associated with a 
parameterised type, e.g. IO or ST s, the type of 
actions.

readFile f >>= \s->
writeFile g s >>= \_->
return s

Call it m.

return :: a -> m a

What is the type of >>=?



  

What are the Types?

A monad is always associated with a 
parameterised type, e.g. IO or ST s, the type of 
actions.

readFile f >>= \s->
writeFile g s >>= \_->
return s

Call it m.

return :: a -> m a

What is the type of >>=?

(>>=) :: m a -> … -> … 

First arg is an action



  

What are the Types?

A monad is always associated with a 
parameterised type, e.g. IO or ST s, the type of 
actions.

readFile f >>= \s->
writeFile g s >>= \_->
return s

Call it m.

return :: a -> m a

What is the type of >>=?

(>>=) :: m a -> (a -> …) -> 
… 

Second arg receives result of first



  

What are the Types?

A monad is always associated with a 
parameterised type, e.g. IO or ST s, the type of 
actions.

readFile f >>= \s->
writeFile g s >>= \_->
return s

Call it m.

return :: a -> m a

What is the type of >>=?

(>>=) :: m a -> (a -> m b) 
-> … 

Second arg returns an action



  

What are the Types?

A monad is always associated with a 
parameterised type, e.g. IO or ST s, the type of 
actions.

readFile f >>= \s->
writeFile g s >>= \_->
return s

Call it m.

return :: a -> m a

What is the type of >>=?

(>>=) :: m a -> (a -> m b) 
-> m b Result is an action returning

result of second arg.



  

The Monad Class

Monad operations are overloaded (hence can be 
used with many libraries).

class Monad m where 
     return :: a -> m a
     (>>=) :: m a -> (a -> m b) -> m b

instance Monad IO … instance Monad (ST s) … 



  

The Monad Class

Monad operations are overloaded (hence can be 
used with many libraries).

class Monad m where 
     return :: a -> m a
     (>>=) :: m a -> (a -> m b) -> m b

instance Monad Parser … instance Monad CGI … 



  

Why Use Monads?



  

Why Use Monads?

•A shared interface to many libraries

•allows a common ”look and feel” -- 
familiarity!

•allows shared code

•functionality the DSEL implementor need not 
implement

•… and which users already know how to use.

liftM :: Monad m => (a->b) -> m a -> m b
sequence :: Monad m => [m a] -> m [a]
do syntactic sugar!

Standa
rd 
library 
Monad



  

Why Use Monads?

•A shared interface to many libraries

•A design guideline: no need to spend 
intellectual effort on the design of sequencing 
operations.



  

Why Use Monads?

•A shared interface to many libraries

•A design guideline: no need to spend 
intellectual effort on the design of sequencing 
operations.

•A systematic implementation: saves intellectual 
effort, encourages code reuse.



  

Systematic Monad 
Implementation

•Start with an underlying monad (e.g. IO, ST)

•Add features (e.g. state, exceptions, 
concurrency) one by one.



  

Systematic Monad 
Implementation

•Start with an underlying monad (e.g. IO, ST)

•Add features (e.g. state, exceptions, 
concurrency) one by one.

This can be
automated!



  

The Identity Monad

The ”vanilla” monad, supporting no special 
features.

newtype Id a = Id a

instance Monad Id where
     return x = Id x
     Id x >>= f = f x

An abstract
type: represented

by an a, but a
different type.

Note (in passing) that >>= is lazy -- it doesn’t 
need its first argument unless f does.

Monadic ”sequencing” doesn’t imply 
sequencing in time… 



  

Adding Features: Monad 
Transformers

A monad transformer transforms an existing 
monad (without a particular feature) into a new 
monad which has it.

A parameterised monad -- represent by a 
parameterised type!

What should the method(s) be?

class (Monad m, Monad (t m)) =>
             MonadTransformer t m where
     … 



  

Adding Features: Monad 
Transformers

A monad transformer transforms an existing 
monad (without a particular feature) into a new 
monad which has it.

A parameterised monad -- represent by a 
parameterised type!

Anything we can do in the old monad, we can also 
do in the new… 

class (Monad m, Monad (t m)) =>
             MonadTransformer t m where
     lift :: m a -> t m a



  

Example: Adding State

Consider adding a state feature: actions may 
depend on, and change, a state.

class Monad m => StateMonad s m | m -> s where
     update :: (s -> s) -> m s

readState = update id
writeState s = update (\_->s)

tick :: StateMonad Integer m
     => m Integer
tick = do n <- readState

   writeState (n+1)
   return n



  

The State Monad

How can we add a state to actions? 

Let actions take the state as an argument, and 
deliver a new state as a result.

newtype State s m a = State (s -> m (s,a))

Parameterised on both
the state and the

underlying monad.



  

The State Monad

The monad operations just pass the state along.

newtype State s m a = State (s -> m (s,a))

instance Monad m => Monad (State s m) where
     return x = State $ \s -> return (s,x)
     State f >>= h = State $ \s ->

do (s’,a) <- f s
     let State g = h a
     g s’



  

The State Monad is a 
StateMonad

newtype State s m a = State (s -> m (s,a))

Of course, we can implement update:

instance Monad m => StateMonad s (State s m)
     where

update f = State $ \s -> 
     let s’ = f s in 
          return (s’,s’)



  

State is a Monad 
Transformer

Can we ”lift” actions in the underlying monad?

Yes -- they don’t change the state!

newtype State s m a = State (s -> m (s,a))

instance MonadTransformer (State s) m where
     lift a = State $ \s -> 

do x <- a
     return (s,x)



  

Last Step: Run Functions

We must be able to observe the result of an action 
-- otherwise the action is useless!

(The only exception is the IO monad, which is 
observable at the top level).

We define a run function for every monad (c.f. 
runST).

runId (Id a) = s
runState s (State f) =
     let (s’,a) = f s in a

Main> runId $ runState 0 $

     sequence 
[tick,tick,tick]

[0,1,2]

Main>



  

Summary: How to Add a 
Feature

•Define a class representing the feature to be 
added (StateMonad).

•Define a type parameterised on an underlying 
monad to represent actions supporting the 
feature (State).

•Define sequencing of actions (instance Monad).

•Define how it supports the feature (instance 
StateMonad).

•Define how to lift underlying actions (instance 
MonadTransformer).

•Define how to observe the result of an action 
(runState).



  

Another Example: Failure

Add a possibility for actions to fail, and to handle 
failure.

class Monad m => FailureMonad m where
     failure :: m a
     handle :: m a -> m a -> m a

Applications in search and backtracking 
programs.

Example:

divide x y = if y==0 then return (x/y) else 
failure



  

Actions with Failure

Allow actions to deliver a special result, meaning 
”I failed”.

newtype Failure m a = Failure (m (Maybe a))

data Maybe a = Just a
 | Nothing



  

Sequencing Failure

Sequencing must check if the first action failed, 
and if so abort the second.

instance Monad m => Monad (Failure m)
     where
          return x = Failure (return (Just x))
          Failure m >>= h = Failure $ 

  do a <- m
       case a of

Nothing -> return Nothing
Just x -> let Failure m’ = h x in m’



  

Supporting Failure
instance Monad m => FailureMonad m where

     failure = Failure $ return Nothing

     Failure m `handle` Failure h = Failure $
do x <- m
     case x of 
          Nothing -> h
          Just a -> return (Just a)



  

Lifting Actions to Failure

instance Monad m => 
    MonadTransformer Failure m where
  lift m = Failure $ do x <- m
                                return (Just x)

Lifting an action just makes it succeed (return 
Just something).



  

Observing Result of  a 
Failure

runFailure :: Failure m a -> m a
runFailure (Failure m) =
     do Just a <- m
          return a

What happens if the result is Nothing? Should 
runFailure handle this?

NO! Handle failures in the monad!

Main> runId $ runFailure $ return 2 `handle` return 3
2 



  

Observing Result of  a 
Failure

runFailure :: Failure m a -> m a
runFailure (Failure m) =
     do Just a <- m
          return a

What happens if the result is Nothing? Should 
runFailure handle this?

NO! Handle failures in the monad!

Main> runId $ runFailure $ failure `handle` return 3
3 



  

Combining Features

Suppose we want to add State and Failure to a 
monad. 

example :: 
    (StateMonad Integer m, 
     FailureMonad m) 

=> m Integer
example = do tick
                       failure
            `handle`

      do tick

We can build a 
suitable monad in 
two ways:

• Failure (State 
Integer m)

• State Integer 
(Failure m)

Need new instances:
• FailureMonad (State s m) 
• StateMonad (Failure m) s



  

Sample Runs

Main> runId $ runState 0 $ runFailure $ example
1
Main> runId $ runFailure $ runState 0 $ example
0

example :: 
    (StateMonad Integer m, 
     FailureMonad m) 

=> m Integer
example = do tick
                       failure
            `handle`

      do tick



  

Sample Runs

Main> runId $ runState 0 $ runFailure $ example
1
Main> runId $ runFailure $ runState 0 $ example
0

example :: 
    (StateMonad Integer m, 
     FailureMonad m) 

=> m Integer
example = do tick
                       failure
            `handle`

      do tick

Failure (State Integer Id)

State Integer (Failure Id)



  

What are the types?

Main> runId $ runState 0 $ runFailure $ example
1
Main> runId $ runFailure $ runState 0 $ example
0

Failure (State Integer Id)

State Integer (Failure Id)

• Failure (State s m) a ≅ s -> m (s, Maybe a)

• State s (Failure m) a ≅ s -> m (Maybe (s, a))

Always yields
a final state

No state on
failure



  

Why the Different 
Behaviour?

Compare the instances of `handle`:

instance FailureMonad m => FailureMonad (State s m) where
State m `handle` State m' = State $ \s -> 
         m s `handle` m' s 

instance Monad m => FailureMonad (Failure m) where
     Failure m `handle` Failure m' = 
         Failure (do x <- m
                            case x of

                  Nothing -> m'
        Just a -> return (Just a))

Same state in handler.

M is a state monad

So state changes



  

Example: Parsing

• A parser can fail -- we handle failure by trying 
an alternative.

• A parser consumes input -- has a state, the input 
to parse.

• A failing parse should not change the state.type Parser m tok a = State [tok] (Failure m) a

Type synonym
-- not abstract

We get for free:

• return x -- accept no tokens & 
succeed

• do syntax -- for sequencing

• failure -- the failing parser



  

Parsing a Token

satisfy p = do s<-readState
           case s of

  [] -> failure
  x:xs -> if p x then do writeState xs

  return x
 else failure

literal tok = satisfy (==tok)



  

Completing the Library

p ||| q = p `handle` q
many p = some p ||| return []
some p = liftM2 (:) p (many p)

runParser p input = 
     runFailure $ runState input $ p

This completes the basic parsing library we saw 
in the previous lecture.



  

Summary

• Monads provide sequencing, and offer a 
general and uniform interface to many different 
DSELs.

• Monad transformers provide a systematic way 
to design and implement monads.

• Together with generic monadic code, they 
provide a lot of functionality “for free” to the 
DSEL implementor.


